AAAI 2026|教会视频扩散模型「理解科学现象」:从初始帧生成整个物理演化
AAAI 2026|教会视频扩散模型「理解科学现象」:从初始帧生成整个物理演化近年来,Stable Diffusion、CogVideoX 等视频生成模型在自然场景中表现惊艳,但面对科学现象 —— 如流体模拟或气象过程 —— 却常常 “乱画”:如下视频所示,生成的流体很容易产生违背物理直觉的现象,比如气旋逆向旋转或整体平移等等。
近年来,Stable Diffusion、CogVideoX 等视频生成模型在自然场景中表现惊艳,但面对科学现象 —— 如流体模拟或气象过程 —— 却常常 “乱画”:如下视频所示,生成的流体很容易产生违背物理直觉的现象,比如气旋逆向旋转或整体平移等等。
近年来,基于扩散模型的图像生成技术发展迅猛,催生了Stable Diffusion、Midjourney等一系列强大的文生图应用。然而,当前主流的训练范式普遍依赖一个核心组件——变分自编码器(VAE),这也带来了长久以来困扰研究者们的几个问题:
2022年10月,Comfyanonymous 偶然接触到 Stable Diffusion 并深深着迷。当时这并非因为什么“让 AI 更易用” 的宏大使命,而是出于对图像生成的纯粹热爱。他最初的尝试,仅仅是想生成一位耳廓狐形象的动画角色的图片。。出于对这个想法的执着,ComfyUI 由此诞生。
从2022年的Stable Diffusion、Midjourney,到如今的即梦AI、Lovart,AI创意工具,已经重塑了创作的工作流: 创作者提供点子,自然语言作为交互界面,AI工具最后高效实现创意的生成。
近年来,扩散模型(Diffusion Models)凭借出色的生成质量,迅速成为图像、视频、语音、3D 内容等生成任务中的主流技术。从文本生成图像(如 Stable Diffusion),到高质量人脸合成、音频生成,再到三维形状建模,扩散模型正在广泛应用于游戏、虚拟现实、数字内容创作、广告设计、医学影像以及新兴的 AI 原生生产工具中。
AMD携手Stability AI宣布推出世界首款适用于Stable Diffusion 3.0 Medium的B16 NPU模型。该模型可直接运行于AMD XDNA 2 NPU之上,能够显著提升图像生成质量。新模型作为Amuse 3.1平台的组件之一亮相,于今天一起发布。
自 Stable Diffusion、Flux 等扩散模型 (Diffusion models) 席卷图像生成领域以来,文本到图像的生成技术取得了长足进步。但它们往往只能根据精确的文字或图片提示作图,缺乏真正读懂图像与文本、在多模 态上下文中推理并创作的能力。能否让模型像人类一样真正读懂图像与文本、完成多模态推理与创作,一直是学术界和工业界关注的热门问题。
何秋剑离开15年国企影视岗位,自学Stable Diffusion等AI工具创业。从10元图片订单起步,依靠影视基础、创意能力及客户服务,发展为月入数万的AIGC制作总监。
从OpenAI 的 4o 到 Stable Diffusion,能够根据文本提示生成逼真图像的 AI 基础模型如今已比比皆是。相比之下,能够仅凭文本提示就生成完整、连贯的 3D 在线环境的基础模型才刚刚崭露头角。
流匹配模型因其坚实的理论基础和在生成高质量图像方面的优异性能,已成为图像生成(Stable Diffusion, Flux)和视频生成(可灵,WanX,Hunyuan)领域最先进模型的训练方法。然而,这些最先进的模型在处理包含多个物体、属性与关系的复杂场景,以及文本渲染任务时仍存在较大困难。